Derivatives and Antiderivatives

(From C:\Users\sjohn\Desktop\ClassDrives\mat171\Antiderivatives\LostSpeech3.html)


















Derivatives, antiderivatives and indefinite integrals

Click the green box to start.
Keep clicking the green boxes to continue



the Chain Rule (for Derivatives)

Typical Application Example: Calculate the derivative of this function \( \sin(3x^{1/5}-2x^3) \)
Chain Rule \[ \frac{d}{dx}\,\Big( g \big(h(x)\big)\Big) = g'\big(\,h(x)\,\big)\,\cdot\, h'(x) \]
the Reason for its existence: It computes the derivative of composed functions, \( g \big(\, h( x )\, \big) \)
Using the Chain Rule First, identify the composition, \( g \) and \( h(x) \) Second, calculate \( g'\big(\,h(x)\,\big)\,\cdot\, h'(x) \)
First Identify the composition parts:
the inside and the outside of \[ g\,\big(\, h(x) \,\big)\, \]
the outside function is \( g \), and
the inside function is \( h(x) \).
outside \[ g\,\big(\, h(x) \,\big)\, = \sin \big( 3x^{1/5}-2x^3 \big) \] \( g(x)=\) \( \sin(x) \)
inside \[ g\,\big(\, h(x) \,\big)\, = \sin \big( 3x^{1/5}-2x^3 \big) \] \( h(x)= \) \( 3x^{1/5}-2x^3 \)
Calculate using
Chain Rule Formula
formula
or
pattern
\[g'\,\big(\,h(x)\,\big)\,\cdot\, h'(x) \] the chain rule pattern uses \( g' \) and \( h' \)
so we need to calculate them,
the derivative \( g'(x)=\) \( \cos(x) \) and \( h'(x)= \) \( 3\cdot \frac{1}{5} x^{-4/5}-2\cdot 3 x^2 \)
Finally, use the pattern. First: \( g'\big( h(x) \big) = \cos\big( h(x) \big) = \cos\big( 3x^{1/5}-2x^3 \big) \)
then multiply by \( h'(x) \) \( g' \big(h(x)\big)\cdot h'(x) = \cos\big(3x^{1/5}-2x^3\big)\,\cdot\, \big( \frac{3}{5}x^{-4/5}-6x^2 \big) \).
The Answer: \[ \frac{d}{dx}\big( \sin(3x^{1/5}-2x^3) \big) = \cos\big(3x^{1/5}-2x^3\big)\,\cdot\, \big( \frac{3}{5}x^{-4/5}-6x^2 \big) \]
\[ \frac{d}{dx}\big( \sin(3\sqrt[5]{x}-2x^3) \big) = \cos\big(3\sqrt[5]{x}-2x^3\big)\,\cdot\, \Big( \frac{3}{5 \sqrt[5]{x^4}}-6x^2 \Big) \] reduce to taste