Derivatives and Antiderivatives

(From C:\Users\sjohn\Desktop\ClassDrives\mat171\Antiderivatives\LostSpeech3.html)


















Derivatives, antiderivatives and indefinite integrals

Click the green box to start.
Keep clicking the green boxes to continue



the Chain Rule (for Derivatives)

Typical Application Example: Calculate the derivative of this function \( \sqrt[3]{ \sin(x)+2\cos(x) } \)
Chain Rule \[ \frac{d}{dx}\,\Big( g \big(h(x)\big)\Big) = g'\big(\,h(x)\,\big)\,\cdot\, h'(x) \]
the Reason for its existence: It computes the derivative of composed functions, \( g \big(\, h( x )\, \big) \)
Using the Chain Rule First, identify the composition, \( g \) and \( h(x) \) Second, calculate \( g'\big(\,h(x)\,\big)\,\cdot\, h'(x) \)
First Identify the composition parts:
the inside and the outside of \[ g\,\big(\, h(x) \,\big)\, \]
the outside function is \( g \), and
the inside function is \( h(x) \).
outside \[ g\,\big(\, h(x) \,\big)\, = \sqrt[3]{ \big( \sin(x)+2\cos(x) \big) } \] \( g(x)=\) \[ \sqrt[3]{x} \]
inside \[ g\,\big(\, h(x) \,\big)\, = \sqrt[3]{ \sin(x)+2\cos(x) } \] \( h(x)= \) \[ \sin(x)+2\cos(x) \]
Calculate using
Chain Rule Formula
formula
or
pattern
\[g'\,\big(\,h(x)\,\big)\,\cdot\, h'(x) \] the chain rule pattern uses \( g' \) and \( h' \)
so we need to calculate them,
the derivative \( g'(x)=\) \[ \frac{1}{3}x^{-2/3}\] and \( h'(x)= \) \[ \cos(x) - 2 \sin(x) \]
Finally, use the pattern. First: find \( g'\big( h(x) \big) \) \( = \frac{1}{3}\big( h(x) \big)^{-2/3} = \frac{1}{3}\big(\, \sin(x) + 2\cos(x) \big)^{-2/3} \)
then multiply by \( h'(x) \) \( g' \big(h(x)\big)\cdot h'(x) = \frac{1}{3}\big(\, \sin(x) + 2\cos(x) \big)^{-2/3} \,\cdot\, \big( \cos(x) - 2 \sin(x) \big) \)
The Answer: \[ \frac{d}{dx}\Big( \sqrt[3]{ \big( \sin(x)+2\cos(x) \big) } \Big) = \frac{1}{3}\big(\, \sin(x) + 2\cos(x) \big)^{-2/3} \,\cdot\, \big( \cos(x) - 2 \sin(x) \big) \]