©SJL

Exponent and Logarithm Properties

1 Graphs

Figure 1: The Graphs of $f(x) = a^x$ and $g(x) = \log_a(x)$ for a > 1.

2 Algebra

The Inverse Identities Exponents and Logarithms

$e^{\ln(x)} = x$ and $\ln(e^x) = x$,	$e^A = B \Leftrightarrow \ln(B) = A,$
$a^{\log_a(x)} = x$ and $\log_a(a^x) = x$.	$a^A = B \Leftrightarrow \log_a(B) = A.$

The Laws of Exponents (for a > 0 and $\alpha, \beta \in \mathbb{R}$)

$$a^{0} = 1, \quad a^{-\alpha} = \frac{1}{a^{\alpha}}$$

$$a^{\alpha} \cdot a^{\beta} = a^{\alpha+\beta}$$

$$(a^{\alpha})^{\beta} = a^{\alpha\cdot\beta}$$

$$\sqrt[r]{a^{s}} = a^{s/r} \text{ where } r > 0$$

The Laws of Logarithms (for a, b, c, x, y > 0 and $r \in \mathbb{R}$)

 $\log_a(1) = 0$ $\log_a(a) = 1$ $\log_a(x \cdot y) = \log_a(x) + \log_a(y)$ $\log_a(x/y) = \log_a(x) - \log_a(y)$

$$\log_a(x^r) = r \log_a(x)$$
$$\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$$